Конспект урока для 11 класса «Химические свойства предельных одноатомных спиртов»


МОУ « Лицей № 47» г. Саратов

Никитина Надежда Николаевна — учитель химии

ПОДГОТОВКА К ЕГЭ ( 10, 11 класс)

Лекция по теме: Химические свойства предельных одноатомных спиртов.

( конспект для учащихся)

В химических реакциях гидроксисоединений возможно разрушение одной из двух связей:

        С–ОН с отщеплением ОН-группы

        О–Н с отщеплением водорода

Это могут быть реакции замещения, в которых происходит замена ОН или Н, или реакция отщепления (элиминирования), когда образуется двойная связь.

Полярный характер связей С–О и О–Н способствует гетеролитическому их разрыву и протеканию реакций по ионному механизму. При разрыве связи О–Н с отщеплением протона (Н+) проявляются кислотные свойства гидроксисоединения, а при разрыве связи С–О – свойства основания и нуклеофильного реагента.

С разрывом связи О–Н идут реакции окисления, а по связи С–О – восстановления.
Таким образом, гидроксисоединения могут вступать в многочисленные реакции, давая различные классы соединений. Вследствие доступности гидроксильных соединений, в особенности спиртов, каждая из этих реакций является одним из лучших способов получения определенных органических соединений.

1. Кислотно-основные свойства.

RO + H+ ↔ ROH ↔ R+ + OH

                                            Кислотные свойства уменьшаются в ряду, а основные возрастают:



HOH →    R-CH2-OH    →    R2CH-OH    →    R3C-OH

вода          первичный           вторичный          третичный

1.1  Кислотные свойства

 Взаимодействие спиртов с активными щелочными металлами:

2C2H5OH + 2 Na → 2C2H5ONa + H2

                                    этилат натрия

 *Алкоголяты подвергаются гидролизу, это доказывает,что у воды более сильные кислотные свойства

C2H5ONa + H2O ↔ C2H5OH NaOH

 2.2.Основные свойства

 Спирты взаимодействуют галогенводородными кислотами:                       

C2H5OH + HBr  H2SO4(кон) C2H5Br + H2O

                                                    бромэтан

* Лёгкость протекания реакции зависит от природы галогенводорода и спирта – увеличение реакционной способности происходит в следующих рядах:

 HF < HCl < HBr  < HI

 первичные  <  вторичные  <   третичные

 2. Окисление

2.1. В присутствии окислителей [O] – K2Cr2O7 или KMnO4 спирты окисляются до карбонильных соединений:

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.

При окислении вторичных спиртов образуются кетоны.

 

* Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях (кислая среда, повышенная температура), что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов (карбоновых кислот и кетонов с меньшей молекулярной массой).                                   

Окисление в кислой среде:

 Для первичных и вторичных одноатомных спиртов качественной реакцией является взаимодействие их с кислым раствором дихромата калия. Оранжевая окраска гидратированного иона Cr2O72- исчезает и появляется зеленоватая окраска, характерная для иона Cr3+ . Эта смена окраски позволяет определять даже следовые количества спиртов.

 CH3— OH + K2Cr2O7 + 4H2SO4 → CO2 + K2SO4 + Cr2(SO4)3 + 6H2O

 3CH3-CH2-OH + K2Cr2O7 + 4H2SO4 → 3CH3COH + K2SO4 + Cr2(SO4)3 + 7H2O

В более жёстких условиях окисление первичных спиртов идёт сразу до карбоновых кислот:                                                           

3CH3-CH2-OH + 2K2Cr2O7 + 8H2SO4 t→ 3CH3COOH + 2K2SO4 + 2Cr2(SO4)3 + 11H2O

* Третичные спирты устойчивы к окислению в щелочной и нейтральной среде. В жёстких условиях (при нагревании, в кислой среде) они окисляются с расщеплением связей С-С и образованием кетонов и карбоновых кислот.

 В нейтральной среде:

 CH3 – OH + 2KMnO4 K2CO3 + 2MnO2 + 2H2O, а остальные спирты до солей соответствующих

карбоновых кислот.

2.2 Горение (с увеличением массы углеводородного радикала – пламя  становится всё более коптящим)  CnH2n+1OH + O2 t CO2 + H2O + Q



2.3. Качественная реакция на первичные спирты

                                 СH3-CH2-OH + CuO      300°,Cu →      CH3-C=O + Cu + H2O

                                                                         │

                                                                         H       (ацетальдегид – запах листвы)

  3. Реакции отщепления ( элиминирования).

 3.1. Внутримолекулярная дегидратация ( — H2O)

                                 CH3-CH2-CH(OH)-CH3        t>140,H2SO4(к)→      CH3-CH=CH-CH3 + H2O

бутанол-2                                                                                  бутен-2

 

В тех случаях, когда возможны 2 направления реакции, например:

дегидратация идет преимущественно в направлении I, т.е. по правилу Зайцева – с образованием более замещенного алкена. Правило Зайцева: Водород отщепляется от наименее гидрированного атома углерода соседствующего с углеродом, несущим гидроксил.

 

3.2. Межмолекулярная дегидратация

                2C2H5OH     t<140,H2SO4(к)   С2H5OC2H5 + H2O

                                                                                       простой эфир

 

* при переходе от первичных спиртов к третичным увеличивается склонность  к отщеплению воды и образованию алкенов; уменьшается способность образовывать простые эфиры.

 3.3.Реакция дегидрирование и дегидратация предельных одноатомных спиртов  реакция С.В. Лебедева

            2C2H5OH      425,ZnO,Al2O3     CH2=CHCH=CH2 + H2 + 2H2O

4. Реакции этерификации

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

 


Свежие документы:  Конспект урока по теме «Понятие о предельных одноатомных спиртах. Трехатомный спирт – глицерин" 9 класс

скачать материал

Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Химия: