МБОУ «Учхозская средняя общеобразовательная школа» Краснослободского муниципального района Республики Мордовия
Конспект урока по информатике в 11 классе
«Ядерные реакции. Энергия связи. Дефект масс»
Урок подготовил и провел: учитель физики, информатики и ИКТ Бахарев Юрий Владимирович
п. Преображенский -2013
Цель: познакомить учащихся с понятием ядерной реакции, дефекта масс, энергией связи.
Ход урока
I. Организационный момент
II. Проверка домашнего задания. Повторение
Что происходит с ядром радиоактивного элемента при α распаде?
Приведите пример реакции α распада.
Как читается правило смещения для α распада?
Что происходит в ядре атома, претерпевшего βраспад? Какие частицы при этом излучаются? Что происходит с зарядом ядра и почему?
Сформулируйте правило смещения для β-распада.
Изменится ли массовое число ядра при βраспаде? Почему?
Каким видом излучения часто сопровождается α и β-распад?
IV. Изучение нового материала
Гипотеза о том, что атомные ядра состоят из протонов и нейтронов, подтверждалась многими экспериментами. Это свидетельствует о справедливости протонно-нейтронной модели строения ядра.
Важную роль во всей ядерной физике играет понятие энергии связи ядра. Энергия связи позволяет объяснить устойчивость ядер, выяснить, какие процессы ведут к выделению ядерной энергии.
Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные частицы.
На основании закона сохранения энергии можно также утверждать, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.
Ядерными реакциями называют изменения атомных ядер при их взаимодействии друг с другом или другими частицами. Мы рассмотрим выделение и поглощение энергии в ядерных реакциях.
1. ЯДЕРНЫЕ РЕАКЦИИ
Как вы уже знаете, в конце 19-го века была открыта радиоактивность — явление самопроизвольного распада атомных ядер. А в 1919 году Резерфорд впервые осуществил искусственное превращение атомных ядер: при бомбардировке азота а-частицами ядро азота превращалось в ядро изотопа кислорода с испускани-
Изменения атомных ядер при взаимодействии их друг с другом или с другими частицами называют ядерными реакциями.
Приведем еще пример: при бомбардировке ядер лития быстрыми протонами эти ядра расщепляются на а-частицы:
УСЛОВИЯ ПРОТЕКАНИЯ ЯДЕРНЫХ РЕАКЦИЙ
Ядерные реакции при столкновениях ядер
Напомним, что ядерные силы характеризуются очень малым радиусом действия. Поэтому для того, чтобы в результате столкновения двух ядер могла произойти ядерная реакция, необходимо сблизить ядра на очень малое расстояние — только тогда между ними начнут действовать ядерные силы.
Однако между положительно заряженными ядрами существуют большие электростатические силы отталкивания. Поэтому сблизиться на достаточно малое расстояние могут только ядра, летящие с большой скоростью. Это весьма существенное обстоятельство не позволяет пока человечеству в полной мере использовать ядерную энергию
Из-за электростатического отталкивания ядер первые ядерные реакции удалось осуществить только тогда, когда в распоряженииученых оказались образующиеся при радиоактивных распадах а-частицы с большой кинетической энергией.
Ядерные реакции на нейтронах
Вскоре после открытия нейтрона итальянский физик Энрико Ферми догадался, что именно нейтрон может оказаться наиболее подходящим «инструментом» для осуществления ядерных реакций — и как раз благодаря своей высокой проникающей способности, обусловленной его нейтральностью.
Так как нейтрон не имеет электрического заряда, даже медленный нейтрон может проникнуть в ядро и вызвать ядерную реакцию. Более того, как было установлено впоследствии (в том числе самим Ферми), именно медленные нейтроны и являются наиболее эффективными для осуществления ядерных реакций.
.
ВЫДЕЛЕНИЕ И ПОГЛОЩЕНИЕ ЭНЕРГИИ ПРИ ЯДЕРНЫХ РЕАКЦИЯХ
При ядерных реакциях происходит выделение или поглощение энергии — суммарная кинетическая энергия ядер и частиц после реакции отличается от их кинетической энергии до реакции.
Так, в первом из приведенных выше примеров (бомбардировка азота α-частицами) суммарная кинетическая энергия протона и ядра кислорода меньше кинетической энергии а-частицы, налетающей на покоящийся атом азота, то есть происходит поглощение энергии. Во втором же примере (бомбардировка лития протонами) суммарная кинетическая энергия образовавшихся ядер гелия (α-частиц) больше кинетической энергии налетающего протона, то есть происходит выделение энергии.
Из закона сохранения энергии следует, что при ядерных реакциях энергия превращается из одного вида в другой: при поглощении энергии кинетическая энергия начальных частиц частично превращается во внутреннюю энергию ядра, а при выделении энергии — начальная внутренняя энергия ядра частично превращается в кинетическую энергию образующихся частиц.
Из курса химии вы уже знаете, что химические реакции также могут идти с поглощением и выделением энергии. Однако выделение энергии при ядерных реакциях в миллионы раз больше: так, при делении ядер одного грамма урана выделяется столько же энергии, сколько при сгорании трех тонн угля.
3. РЕАКЦИИ СИНТЕЗА И ДЕЛЕНИЯ ЯДЕР
УДЕЛЬНАЯ ЭНЕРГИЯ СВЯЗИ
Для расчета энергетики ядерных реакций необходимо знать энергию связи, приходящуюся на один нуклон. Ее называют удельной энергией связи.
Из закона сохранения энергии следует, что энергия выделяется в ядерных реакциях тогда, когда внутренняя энергия ядра уменьшается.
Это значит, что при таких реакциях удельная энергия связи в ядрах — продуктах реакции — должна быть больше, чем в исходных ядрах (при этом в ядрах — продуктах реакции — нуклоны
как бы сближаются по сравнению с исходными ядрами и начинают сильнее взаимодействовать между собой).
Рассмотрим теперь полученный из многочисленных опытов график зависимости удельной энергии связи от массового числа ядра
РЕАКЦИИ СИНТЕЗА
Прежде всего обратим внимание на острый пик, соответствующий ядру гелия Не. Он означает, что это ядро (а-частица) характеризуется намного большей удельной энергией связи, чем ядра дейтерия и трития .
И действительно, в реакции выделяется очень большая энергия (в расчете на один нуклон). Именно с этой реакцией, как мы увидим далее, и связывают ученые главные надежды на преодоление человечеством энергетического кризиса в будущем.
Образование ядра из менее массивных ядер называют реакцией синтеза.
Для осуществления реакции синтеза необходимо сблизить ядра на очень малое расстояние, чтобы между ними начали действовать ядерные силы. Чтобы преодолеть электрическое отталкивание, эти ядра должны двигаться с большой скоростью друг относительно друга, то есть обладать большой кинетической энергией. Значит, чтобы такая реакция осуществлялась в некоторой среде, температура этой среды должна быть очень высокой: расчеты показывают, что реакция синтеза может идти только при температурах в десятки миллионов градусов.
По этой причине реакции синтеза называют часто термоядерными реакциями.
Именно такие реакции и происходят при указанных температурах в недрах звезд (в том числе и нашего Солнца), являясь основным источником их энергии.
На Земле термоядерную реакцию впервые удалось осуществить в водородной бомбе, которая была испытана в 1953 году в СССР. К счастью, водородную бомбу никогда не применяли в военных действиях. Сегодня ученые многих стран, в том числе и России, активно занимаются «приручением» термоядерной реакции: она была бы практически неисчерпаемым источником энергии (см. §27. Ядерная энергетика).
РЕАКЦИИ ДЕЛЕНИЯ
Из графика зависимости удельной энергии связи от массового числа ядра видно, что наибольшей энергией связи характеризуются ядра с массовыми числами от 50 до 60, то есть ядро железа и близких к нему по массовому числу ядер.
Отсюда следует, что при расщеплении тяжелых ядер с большим массовым числом (соответствующих элементам, находящимся ближе к концу таблицы Менделеева) на средние по массовому числу ядра удельная энергия связи увеличивается, то есть происходит выделение энергии.
Расщепление ядра на менее массивные ядра называют реакцией деления.
Как были открыты реакции деления?
В 1938 году немецкие ученые Отто Ган и Фриц Штрассман установили, что среди элементов, возникающих при облучении урана нейтронами, присутствует радиоактивный барий. А в следующем году английский физик Отто Фриш и австрийский физик Лизе Мейтнер1 теоретически доказали, что при этом происходит реакция деления ядер урана.
Дальнейшие исследования подтвердили эти выводы. Одна из реакций деления ядер такова:
Энерговыделение этой реакции около 200 МэВ. Это значит, что при делении ядер, содержащихся в 1 г урана, выделяется такая же энергия, как при сгорании нескольких тонн угля.
В 1940 году советские физики Г. Н. Флеров и К. А. Петржак обнаружили, что ядра урана делятся не только при их облучении нейтронами, но и самопроизвольно. Однако период полураспада для спонтанного деления ядер урана огромен даже по геологическим меркам: он в миллионы раз больше времени существования Земли
Энергия связи атомных ядер очень велика. Например, образование 4 г гелия сопровождается выделением такой же энергии, что и сгорания 1,5-2 вагонов каменного угля.
Наиболее простой путь нахождения этой энергии основан на применении закона о взаимосвязи массы и энергии:
Е = тс2.
Масса покоя ядра Мя всегда меньше суммы масс покоя слагающих его протонов и нейтронов:
Мя <Zmp +N mn ,
т. е. существует дефект масс:
Δm = Zmp +N mn -Мя.
Энергия связи ядра:
Ядерными реакциями называют изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом. Первая ядерная реакция на быстрых протонах была осуществлена в 1932 г. Удалось расщепить литий на две а-частицы:
V. Закрепление материала
Какие силы действуют между нуклонами в атомном ядре?
Проявлением какого вида фундаментальных взаимодействий являются эти силы?
VI Домашнее задание. П. 106.
Р-1183, Р-1184
Список используемой литературы:
Физика. 11кл. Учебник_Мякишев, Буховцев, Чаругин_2010.
Физика. Задачник. 10-11кл_Рымкевич А.П_2013 -192с
Физика. 11 кл. В 2 ч. Ч. 1. Учебник_Генденштейн Л.Э, Дик Ю.И_2009 -352с.