Опорный конспект по математике «Исследование функции с помощью производной»


Опорный конспект

«Исследование функции с помощью производной»


ГАОУ СПО ВПТК

Зотова И.В., преподаватель математики



  1. Найти область определения: D (f);

Все значения, которые принимает независимая переменная

  1. Найти область значения: E (f);

Все значения, которые принимает функция

  1. Определить четность / нечетность функции;

Функция y = f (x) называется четной (нечетной), если для любого x из области определения функции выполняется равенство f (-x) = f (x) (f (-x) = —f (x))

Свойства четных (нечетных) функций:

Если функция является четной (нечетной), то её график симметричен относительно оси ординат (начала координат).

  1. Определить нули функции (точки пересечения с осями координат);

Точки пересечения с OY: f (x)=0

Точки пересечения с OX: f (0)

  1. Определить промежутки знакопостоянства (график расположен выше оси OX или ниже этой оси);

Промежутки знакопостоянства — множества значений аргумента, на которых значения функции только положительны или только отрицательны.


  1. Определить промежутки монотонности (промежутки возрастания и убывания);

Точки, в которых производная функции равна нулю или не существует (f, (x) = 0 или f, (x) не существует), называются критическими.

Пусть функция у = f (x) определена и непрерывна в промежутке Х во всех внутренних точках этого промежутка имеет неотрицательную производную (f, (x)≥0), тогда функция у = f (x) возрастает на промежутке Х.

Пусть функция у = f (x) определена и непрерывна в промежутке Х во всех внутренних точках этого промежутка имеет неотрицательную производную (f, (x)≤ 0), тогда функция у = f (x) убывает на промежутке Х.


  1. Определить точки экстремума;


Необходимое условие экстремума: Если функция у = f (x) имеет экстремум в точке х = а, то либо f, (а) = 0, либо f, (а) не существует.

Пусть х=а – критическая точка функции у = f (x), и пусть существует интервал (b;с), содержащий точку а внутри себя и такой, что на каждом из интервалов (b;а), (а;с) производная f, (x) существует и сохраняет постоянный знак. Тогда:

  1. если на (b;а) производная f, (x)>0, а на (а;с) производная f, (x)<0, то х=а – точка максимума функции у = f (x) ( если производная в критической точке меняет свой знак с + на -, то эта точка — точка максимума).

  2. если на (b;а) производная f, (x)<0, а на (а;с) производная f, (x)>0, то х=а – точка минимума функции у = f (x) ( если производная в критической точке меняет свой знак с — на +, то эта точка — точка минимума).

Достаточное условие экстремума: Если и на (b;а), и на (а;с) производная f, (x)<0 или f, (x)>0, то х=а не является точкой экстремума функции у = f (x) (если производная не меняет знак при переходе через критическую точку, то эта точка не точка экстремума).

  1. Определить наибольшее и наименьшее значения функции.

Если функция непрерывна на отрезке [a; b], то своё наибольшее (наименьшее) значение на этом отрезке она принимает либо на конце отрезка, либо в критической точке.

Таким образом, для нахождения наибольшего (наименьшего) значения функции на отрезке, на котором она непрерывна, достаточно:

— найти критические точки функции, принадлежащие отрезку;

— вычислить значения функции в критических точках и на концах отрезка;

— из найденных значений выбрать наибольшее (наименьшее).


Свежие документы:  Конспект урока по математике "Графический способ решения уравнений в среде Microsoft Excel 2007"

скачать материал

Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Математика: