Конспект урока на тему «Теория вероятностей»


МБОУ «СОШ № 143» г. Красноярска,

учитель математики Князькина Татьяна Викторовна


Теория вероятностей: подготовка к ЕГЭ 2014


Не так давно задачи по теории вероятностей включены в ЕГЭ по математике — это задачи В10.

Образовательный стандарт подразумевает, что выпускник средней школы должен уметь строить и исследовать простейшие математические модели. В данном случае речь идет о моделировании случайных явлений. Конкретно об использовании элементов теории вероятностей при решении прикладных задач.

Для начала определение: случайное событие — это событие, которое нельзя точно предсказать. Оно может либо произойти, либо нет.

Например, Вы получили подарок, оказавшись тысячным покупателем в бутике — это случайное событие. Либо Вы выиграли в лотерею — случайное событие. Однако, очевидно, что для любого случайного события есть какая-то вероятность, с которой оно может произойти. Если лотерейный билет купило 150.000 человек, а выиграли Вы один, то вероятность — 1 к 150.000. То есть интуитивно понятно, что такое вероятность события.

Рассмотрим примеры.

Бросаем монету. Выпадет либо орел… либо решка… Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием. Орел и  решка — два возможных исхода испытания (все варианты событий, которые только могут произойти, монета не может ни зависнуть, ни встать на ребро).

Возвращаясь к нашей монете, можно сказать, орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна 1/2. Так же вероятность выпадения решки 1/2.

Следующий пример: игральная кость.

У кубика всего шесть граней, поэтому возможных исходов шесть (кубик может упасть только на одну из шести граней).

Выпадение одного очка это один исход из шести возможных. Выпадение двух очков, это один исход из шести возможных. В теории вероятности такой исход называется благоприятным исходом.

Вероятность выпадения тройки так же равна 1/6 (один благоприятный исход из  шести возможных). Вероятность четверки  — тоже 1/6. А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.

Игральные карты.

Возьмём колоду из 36 карт. Вероятность того, что Вы вытащите из колоды карт одну, которую загадали, равна один к тридцати шести или 1/36, тридцать шесть это число возможных исходов, которые могут произойти (число всех карт), один это число благоприятных исходов (загаданная карта).

Вероятность того, что вы вытащите из колоды карт туза, равна 4 к 36 или 4/36. Четыре это число благоприятных исходов (в колоде четыре туза), тридцать шесть — число возможных исходов.

Вероятность того, что вы вытащите из колоды карт красную карту (черви или буби) равна 1 к 2 или 1/2. Число благоприятных исходов 18 (красных карт ровно половина), возможных исходов также 36, 18/36=1/2.

Вероятность события равна отношению числа благоприятных исходов к  числу всевозможных исходов.

Понимания этого определения вполне достаточно, чтобы решить задачи В10.

Очевидно, что вероятность не может быть больше единицы.

Таким образом, с точки зрения математических операций эта задача решается в одно действие, она предельно проста.
И в то же время достаточно трудна, потому что требует очень внимательно разобрать «бытовую» ситуацию, заданную в условии, чтобы

  • выявить элементарные события,

  • выделить благоприятствующие,

  • не пропустить ни одного из всех возможных исходов

  • и не включить ни одного лишнего.

Научиться этому можно только в процессе решения задач, постепенно переходя от совсем простых к менее простым.

Пример. Есть 23 шара одинакового размера, из них 8 — красных, остальные — зеленые. Вы  наугад берете один шар. Вероятность того, что это окажется красный шар равна 8/23, а зеленый — 15/23.

Вероятность взять красный или зеленый шар равна 8/23 + 15/23 = 1.

Ну а теперь переходим к решению самих прототипов В10.

Начну с простых задач.

Итак, задача:

Брошена игральная кость. Какова вероятность того, что выпадет чётное число очков?

1, 3, 5 — нечетные числа; 2, 4, 6 — четные. Число возможных исходов при бросании игральной кости 6. Число благоприятных исходов 3 (выпадение двойки, четвёрки или шестёрки). Таким образом, вероятность выпадения четного числа очков равна три к шести или 0,5.

Ответ: 0,5


Брошена игральная кость. Какова вероятность того, что выпадет число меньше 4?

Другими словами, какова вероятность того, что выпадет либо единица, либо двойка, либо тройка? Число возможных исходов 6. Число благоприятных исходов 3 (выпадение единицы, двойки или тройки). Таким образом, вероятность выпадения числа меньшего четырёх будет 3 к 6 или 3/6=0,5.

Ответ: 0,5


В ящике 6 белых и 4 чёрных шара. Какова вероятность того, что первый наудачу выбранный шар окажется белым?

Всего шаров 10, значит число возможных исходов 10. Число благоприятных исходов 6 (в ящике 6 белых шаров). Вероятность того, что первый выбранный шар окажется белым 6 к 10, то есть 6/10=0,6

Ответ: 0,6


Набирая номер телефона, абонент забыл последнюю цифру. Какова вероятность того, что он правильно дозвонится, набрав последнюю цифру наугад?

Абоненту нужно выбрать одну из десяти цифр, то есть число возможных исходов 10. Число благоприятных исходов 1 (верной может быть только одна цифра). Вероятность того, что он правильно дозвонится равна 1 к 10 или 0,1.

Ответ: 0,1


Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовёт число 56?

Число возможных исходов 100 (сто чисел). Верно названное число одно это 56, значит благоприятный исход один. Вероятность того, что он назовёт число 56 будет один к ста или 0,01.

Ответ: 0,01


Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовёт число кратное пяти?

Число возможных исходов 100 (сто чисел). Чисел кратных пяти двадцать (перечислим):5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100. То есть число благоприятных исходов 20. Вероятность того, что ученик назовёт число кратное пяти равна 20 к 100 или 20/100=0,2.

Ответ: 0,2


Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовёт число, принадлежащее промежутку от 5 до 20 включительно?

Число возможных исходов 100. Число благоприятных исходов 16: это числа от 5 до 20 (5,6…..19,20), причём 5 и 20 входят в промежуток (в условии сказано «от 5 до 20 включительно»). Искомая вероятность равна 16/100.

Ответ: 0,16


В фирме такси в данный момент свободно 10 машин: 5 чёрных, 1 жёлтая и 4 зелёных. На вызов выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Найдите вероятность того, что к нему приедет жёлтое такси.

Возможное число исходов 10. Число благоприятных исходов 1 (жёлтая машина одна). Искомая вероятность равна 1 к 10 или 0,1.

Ответ: 0,1


Валя выбирает трёхзначное число. Найдите вероятность того, что оно делится на 51.

Число возможных исходов это количество трёхзначных чисел. Их существует от 100 до 999, быстрее всего их можно посчитать так: 1000-1-99=900 (исключаем тысячу и числа от 1 до 99). То есть число всевозможных исходов: 900. Найдем, сколько трехзначных чисел делится на 51. Если мы поделим 999 — самое большое трехзначное число — на 51, то получим приблизительно 19 целых пятьдесят восемь сотых. То есть в 999 вмещается 19 чисел, кратных 51. Но среди них есть и само число 51, которое не является трехзначным. А значит трехзначных чисел, делящихся на 51 — 18.

Число благоприятных исходов 18. Вероятность искомого события равна 18 к 900, или 18/900=0,02.

Ответ: 0,02


При двукратном бросании игрального кубика в сумме выпало 6 очков. Найдите вероятность того, что первый раз выпало меньше трёх очков.

Сумму в шесть очков можно получить следующими способами (переберём варианты): 1+5, 2+4, 3+3, 4+2, 5+1 — всего их пять, это и есть число возможных исходов. Из представленных вариантов также видно, что менее трёх очков при первом броске может выпасть только в двух случаях. Искомая вероятность равна 2 к 5 или 0,4.

Ответ: 0,4


Монету бросают трижды. Найдите вероятность того, первые два броска окончатся одинаково.

Найдём число возможных исходов, переберём все варианты бросков. В подобных задачах составляйте таблицу, так считать на много удобней.


1-й бросок

2-ой бросок

3-ий бросок

1

орёл

орёл

орёл

2

орёл

орёл

решка

3

орёл

решка

решка

4

орёл

решка

орёл

5

решка

решка

решка

6

решка

решка

орёл

7

решка

орёл

орёл

8

решка

орёл

решка

Всего возможных исходов восемь.

Первые два броска одинаково могут окончится в четырёх случаях это 1,2,5,6 варианты, то есть благоприятных исходов 4. Искомая вероятность равна 4/8=0,5.

Обратите внимание, что если в условие добавить одно только слово, смысл задачи изменится, многие из-за невнимательности решают неверно. Итак:

Монету бросают трижды. Найдите вероятность того, что только первые два броска окончатся одинаково.

Благоприятных исходов будет 2, это 2-й и 6-й варианты, первый и пятый варианты исключаются из-за этого «только».


В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.

В данной задаче составляется та же таблица, что и предыдущей. Орёл не выпадет ни разу только в одном варианте из восьми (пятый вариант). Искомая вероятность равна 1 к 8 или 0,125.

Ответ: 0,125

В среднем на 150 карманных фонариков приходится три неисправных. Какова вероятность купить исправный фонарик.

Количество возможных исходов 150. Количество благоприятных исходов 150-3=147 (на 150 приходится 147 исправных). Вероятность купить исправный фонарик 147 к 150 или 147/150=49/50=0,98

Ответ: 0,98


В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

В подобных задачах для удобства следует составить таблицу сумм для двух костей (все варианты сумм, которые могут выпасть):


1

2

3

4

5

6

1

2

3

4

5

6

7

2

3

4

5

6

7

8

3

4

5

6

7

8

9

4

5

6

7

8

9

10

5

6

7

8

9

10

11

6

7

8

9

10

11

12

Всего исходов 36 (6 на 6). Благоприятных исходов 5 (легко подсчитать в таблице). Вероятность того, что в сумме выпадет 8 очков, равна 5 к 36 или 0,13888888…. Округляем до сотых, получаем 0,14.

Ответ: 0.14


В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется первый номер. Вероятность того, что его вытянет китайская спортсменка равна 5 к 20, то есть 5/20 (поскольку из Китая — 5 спортсменок).

Ответ: 0,25


Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?

Выясним, как распределятся выступления по дням:

1 день – 8 выступлений, остальные поровну, значит по 18 выступлений в день. Вероятность, что выступление представителя России состоится в третий день конкурса, равна 18 к 80 или 18/80=0,225.

Ответ: 0,225


На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.

Восьмым может оказаться любой учёный, значит возможных исходов 10 (их всего 10). Из России приехало трое, значит благоприятных исходов три. Вероятность того, что восьмым окажется доклад ученого из России 3 к 10 или 0,3.

Ответ: 0,3


Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?

В данном случае нужно поставить себя на место Руслана Орлова.

Он будет играть кем-то из 25 спортсменов (на чемпионат приехали Руслан и ещё 25 спортсменов), значит возможных исходов 25. Из них осталось 9 спортсменов из России. Это и есть число благоприятных исходов. Вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России 9 к 25 или 0,36.

Ответ: 0,36

Задачи на теоремы сложения и умножения вероятностей

Правило сложения: если некоторый объект A можно выбрать k способами, а объект B — l способами (не такими как А), то объект «или А или В» можно выбрать m + l способами.

Правило умножения: если объект А можно выбрать k способами, а после каждого такого выбора другой объект В можно выбрать (независимо от объекта А) l способами, то пары объектов А и B можно выбрать m·l способами.

Правило умножения еще называют «И-правилом», а правило сложения «ИЛИ-правилом». Не забывайте проверить независимость способов для «И» и несовместимость (не такими) для «ИЛИ».

Следующие задачи можно решать как перебором вариантов, так и с помощью формул. Я даю несколько способов решения для каждой задачи, потому что одним способом её можно решить быстро, а другим долго, и потому что кому-то понятнее один подход, а кому-то другой. Но это не значит, что обязательно нужно разбирать все способы. Лучше хорошо усвоить один любимый. Выбор за вами.

Задача 1. Стрелок стреляет по мишени 1 раз. В случае промаха стрелок делает 2-ой выстрел. Вероятность попадания в мишень при одном выстреле равна 0,7.Найти вероятность того, что мишень будет поражена (либо первым либо вторым выстрелом).

Решение: Тут логика такая: посчитаем вероятность того, что мишень НЕ будет поражена, то есть стрелок оба раза промахнётся. Это просто: (1-0,7)*(1-0,7) = 0,09.
Соответственно, вероятность того, что этого не произойдёт, будет 1-0,09=0,91.
Можно и иначе: нам нужно вычислить вероятность того, что стрелок:
(поразит первую мишень И промахнётся по второй) ИЛИ (промахнётся по первой И поразит вторую) ИЛИ (поразит первую И поразит вторую)
Заменим в этой фразе события на соответствующие вероятности, «И» на «умножить», а «ИЛИ» на «сложить». Получим:
0,7*0,3 + 0,3*0,7 + 0,7*0,7 = 0,91

Ответ 0,91
Задача 2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 3 очка. Результат округлите до сотых

Решение: На игральных костях должно выпасть 1+2 или 2+1 в порядке следования костей. Вероятность того что на первой из игральных костей выпадет 1 составляет 1/6, такая же вероятность, того что на второй кости выпадет 2. Т.к. эти события независимы Р=1/6*1/6=1/36. Такая же вероятность, того, что на первой из костей выпадет 2 а на второй 1. Тогда искомая вероятность составит 1/36+1/36=1/18 приблизительно равно 0,06.

Ответ 0,06

Задача 3. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых.

Решение: Результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы. Вероятность каждого попадания равна 0,8. Значит, вероятность промаха равна 1 – 0,8 = 0,2.

1 выстрел: 0,8

2 выстрел: 0,8

3 выстрел: 0,8

4 выстрел: 0,2

5 выстрел: 0,2

По формуле умножения вероятностей независимых событий, получаем, что искомая вероятность равна: 0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 = 0,02048 ≈ 0,02

Ответ 0,02

Задача 4. Прототип B10 № 319353

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решeние: Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135. 
Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055. 
Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0135 + 0,0055 = 0,019. 
Ответ: 0,019.

Задача 5. Прототип B10 № 319355

Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решeние: Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,52 · 0,3 = 0,156.

Ответ: 0,156.

Задача 6. Прототип B10 № 320172

В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Решeние: Рассмотрим события А = кофе закончится в первом автомате, В = кофе закончится во втором автомате. Тогда A·B = кофе закончится в обоих автоматах, A + B = кофе закончится хотя бы в одном автомате. 
По условию P(A) = P(B) = 0,3; P(A·B) = 0,12. 
События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения: 
P(A + B) = P(A) + P(B) − P(A·B) = 0,3 + 0,3 − 0,12 = 0,48. 
Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,48 = 0,52.

Ответ: 0,52.

Другое решение. 
Вероятность того, что кофе останется в первом автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется во втором автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,12 = 0,88. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,88 = 0,7 + 0,7 − х, откуда искомая вероятость х = 0,52. 
Примечание. 
Замечу, что события А и В не являются независимыми. Действительно, вероятность произведения независимых событий была бы равна произведению вероятностей этих событий: P(A·B) = 0,3·0,3 = 0,09, однако по условию эта вероятность равна 0,12.

Ответ: 0,52

Задача 7. Прототип B10 № 320171

На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решeние: Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: 0,2 + 0,15 = 0,35.

Ответ: 0,35.

Задача 8. Прототип B10 № 320174

В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен. 
Решeние:
Найдем вероятность того, что неисправны оба автомата. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025. Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна 1 − 0,0025 = 0,9975.Ответ: 0,9975.

Другое решение. 
Вероятность того, что исправен первый автомат (событие А) равна 0,95. Вероятность того, что исправен второй автомат (событие В) равна 0,95. Это совместные независимые события. Вероятность их произведения равна произведению вероятностей этих событий, а вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Имеем

P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B) − P(A)P(B) = 0,95 + 0,95 − 0,95·0,95 = 0,9975.

Ответ: 0,9975

Задача 9. Прототип B10 № 320173

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

Решeние: Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Cобытия попасть или промахнуться при каждом выстреле независимы, вероятность произведения независимых событий равна произведению их вероятностей. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна 0,8*0,8*0,8*0,2*0,2=0,02048

 Ответ: 0,02.

Задача 10. Прототип B10 № 320176

Вероятность того, что новый электрический чайник прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Решeние: Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», тогда A + B = «чайник прослужит больше года». 
События A и В совместные, вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Вероятность произведения этих событий, состоящего в том, что чайник выйдет из строя ровно через два года — строго в тот же день, час и секунду — равна нулю. Тогда: P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B),
откуда, используя данные из условия, получаем 0,97 = P(A) + 0,89.
Тем самым, для искомой вероятности имеем: P(A) = 0,97 − 0,89 = 0,08.
Ответ: 0,08.

Задача 11. Прототип B10 № 320180

Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Решeние: Джон промахнется, если схватит пристрелянный револьвер и промахнется из него, или если схватит непристрелянный револьвер и промахнется из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·(1 − 0,9) = 0,04 и 0,6·(1 − 0,2) = 0,48. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,04 + 0,48 = 0,52. 
Ответ: 0,52.

Другое решение.  Джон попадает в муху, если схватит пристрелянный револьвер и попадет из него, или если схватит непристрелянный револьвер и попадает из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·0,9 = 0,36 и 0,6·0,2 = 0,12. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,36 + 0,12 = 0,48. Событие, состоящее в том, что Джон промахнется, противоположное. Его вероятность равна 1 − 0,48 = 0,52.

Задача 12. Прототип B10 № 320198

Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.

Решeние: Рассмотрим события A = «учащийся решит 11 задач» и В = «учащийся решит больше 11 задач». Их сумма — событие A + B = «учащийся решит больше 10 задач». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). Тогда, используя данные задачи, получаем: 0,74 = P(A) + 0,67, откуда P(A) = 0,74 − 0,67 = 0,07. 
Ответ: 0,07.

Задача 13. Прототип B10 № 320201

В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).

Решeние: Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что все три продавца заняты равна 0,3*0,3*0,3=0,027 
Ответ: 0,027.

Задача 14. Прототип B10 № 320203

Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.

Решeние: Рассмотрим события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от 15 до 19 пассажиров». Их сумма — событие A + B = «в автобусе меньше 20 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: 
P(A + B) = P(A) + P(B). 
Тогда, используя данные задачи, получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38. 
Ответ: 0,38.

Задача 15. Прототип B10 № 320205

Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

Решeние: Требуется найти вероятность произведения трех событий: «Статор» начинает первую игру, не начинает вторую игру, начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125. 
Ответ: 0,125.

Задача 16. Прототип B10 № 320206

В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решeние: Для погоды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х — хорошая, О — отличная погода). Найдем вероятности наступления такой погоды: 
P(XXO) = 0,8·0,8·0,2 = 0,128; 
P(XOO) = 0,8·0,2·0,8 = 0,128; 
P(OXO) = 0,2·0,2·0,2 = 0,008; 
P(OOO) = 0,2·0,8·0,8 = 0,128. 
Указанные события несовместные, вероятность их сумы равна сумме вероятностей этих событий: 
P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392. 
Ответ: 0,392.

Задача 17. Прототип B10 № 320210

Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решeние: Вероятность того, что батарейка исправна, равна 0,94. Вероятность произведения независимых событий (обе батарейки окажутся исправными) равна произведению вероятностей этих событий: 0,94·0,94 = 0,8836. 
Ответ: 0,8836.

Задача 18. Прототип B10 № 320211

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная из упаковки батарейка будет забракована.

Решeние: Ситуация, при которой батарейка будет забракована, может сложиться в результате событий: A = батарейка действительно неисправна и забракована справедливо или В = батарейка исправна, но по ошибке забракована. Это несовместные события, вероятность их суммы равна сумме вероятностей эти событий. Имеем:  P(A+B)=P(A)+P(B)=0,02*0,99+0,98*0,01=0,0198+0,0098=0,0296
Ответ: 0,0296.

Задача 19. Прототип B10 № 501001

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решeние: Возможны три варианта: орел-орел-решка, орел-решка-орел, решка-орел-орел. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий: 1/2*1/2*1/2+1/2*1/2*1/2+1/2*1/2*1/2=0,375

Другое решение. 
Можно перечислить все возможные случаи бросания монетки (О — орел, Р — решка): ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР и найти, в скольких из них орел выпал ровно два раза: ООР, ОРО, РОО. Тем самым, вероятность выпадения орла дважды равна 3:8 = 0,375. (Этот подход затруднителен в случае большого числа бросаний монетки.) 

Ответ: 0,375

2013год





11


Свежие документы:  Конспект урока для 3 класса "Holidays in Britain. Christmas"

скачать материал

Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Математика: