Лоренц Ольга Алексеевна, учитель математики МКОУ СОШ №40 г. Сатка Челябинской области.
Предлагаю учителям, работающим в 11-х классах конспект урока, который я разработала сама. Работа на уроке проводится в группах, на которые делится класс перед уроком. В каждой группе выбирается ученик – консультант. Этот ученик, как правило, один из наиболее успешных. Связь учителя с каждой группой поддерживается именно через консультанта. Таким образом, на уроке используется такая технология обучения, как обучение в сотрудничестве. Ученики совместно работают над поставленной задачей. Общая оценка работы группы складывается из оценки общения учащихся в группе наряду с результатами работы. Каждый член группы, вместе с личной ответственностью за свои успехи, несёт ответственность за успехи своих согруппников. После совместной работы, необходимо обсудить, как она проходила в каждой группе, как оказывалась необходимая помощь, нуждающимся в ней; ученики обсуждают своё поведение; анализируют, что удалось, что нет, и намечают пути совершенствования своего сотрудничества.
На уроке используется проблемно-поисковый метод обучения: перед каждой группой ставится задача и, чтобы её решить, надо определить тип уравнения и выбрать способ его решения. Наряду с систематизацией уже известных знаний, постановка проблемы имеет и элемент творческой деятельности. Ученикам нравятся такие уроки.
Что касается темы «Решение логарифмических уравнений», интерес учащихся к ней проявляется в активности при обсуждении способов решения уравнений. Неплохо усваиваются свойства логарифмов и их применение в решении уравнений. Одна из проблем решения – проверка корней, ученики её просто забывают сделать. Поэтому, первое, с чего необходимо начинать обсуждение, это – ОДЗ.
Надеюсь, мой опыт будет полезен моим коллегам.
План – конспект урока в 11 классе «Обобщение и систематизация знаний учащихся по изучению уравнений, неравенств, методов их решения».
Тема урока: « Решение логарифмических уравнений ».
Цели урока: вспомнить и систематизировать виды логарифмических уравнений, основные способы решений логарифмических уравнений.
Задачи урока: а) обучающая — формирование знаний о свойствах логарифмической
функции и применении их в решении логарифмических уравнений;
итоговая отработка способов и методов их решения;
б) развивающая — развитие навыков самоконтроля при решении заданий;
развитие навыков взаимоконтроля;
в) воспитательная — формирование грамотной устной и письменной
математической речи учащихся, воспитание ответственного отношения
к учебному труду; воспитание чувства коллективизма.
Оборудование: компьютер, мультимедийный проектор, экран.
Ход урока:
1. Сообщение целей урока и его плана.
2. а) ответы на вопросы по домашней работе по предыдущей теме(6-7 минут);
б) устная работа по вопросам теории, заданным также на дом:
1. Определение логарифма, натуральный и десятичный логарифмы, примеры;
2. Основное логарифмическое свойство, примеры;
3. Формула логарифма произведения, примеры;
4. Формула логарифма частного, примеры;
5. Формула логарифма степени, примеры;
6. Формула перехода от одного основания логарифма к другому, примеры;
7. Об области определения и монотонности логарифмической функции.
3. Систематизация знаний и умений с использованием заранее заготовленных заданий (30 минут).
Учитель проектирует на экран задание, учащиеся вместе с учителем обсуждают типы уравнений и методы их решений. Затем решают в тетрадях. После чего, учитель проектирует на экран решение и окончательный ответ. В ходе проверки комментируются все применяемые свойства и определения.
Блок№1.
Простейшие уравнения.
а) log (2x2 — 2x — 1) = — .
По определению логарифма получаем уравнение 2х2 – 2х – 1 = ( )2х2 – 2х -1 = 3
х2 – х – 2 = 0. Ответ: -1; 2.
б) log25[ log3(2 – log0,5 x)] = — .
По определению логарифма получаем уравнение log3(2 – log0,5 x) = 25-0,5log3(2 – log0,5x) = 1. Вновь используем определение логарифма: 2 — log0,5 x = 31 , откуда log0,5 x = — 1
Получаем х = ()-1 = 2. Ответ: 2.
в) log3 (x2 – 4) = log3 (4x – 7).
Особенностью логарифмических уравнений является появление посторонних корней. Это связано с расширением ОДЗ уравнения в ходе его преобразования. Поэтому полученные корни необходимо проверять подстановкой.
ОДЗ данного уравнения задаётся неравенствами . Решая эту систему неравенств получаем ОДЗ уравнения х(2; ∞).
Логарифмическое уравнение заменяем ему равносильным: х2 – 4х + 3 = 0, которое имеет корни х1 = 1 и х2 = 3. После проверки выявляется посторонний корень х = 1. Ответ: 3.
Блок № 2.
Уравнения, решаемые их преобразованиями.
а) 2log3(x – 2) – log3(x2 – 4x + ) = 2.
ОДЗ: . Сведём данное уравнение к простейшему: log3(x – 2)2 – log3(x2 – 4x + ) = 2 log3. После преобразований получим квадратное уравнение: х2 – 4х + 3 = 0, которое имеет корни
х1 = 1 и х2 = 3. После проверки выявляется посторонний корень х = 1. Ответ: 3.
б) log2 x + log4 x + log8 x = 5,5.
Одним из распространённых преобразований является переход к новому основанию в логарифмах: logcb=.
В логарифмах перейдём к одному основанию, например числу 2.
log2 x + log2 x + log2 x + log2 x = 5,5 6 log2 x + 3 log2 x + 2log2 x = 33 11∙ log2 x = 33 log2 x = 3 x = 23 = 8. Ответ: 8.
Блок № 3.
Уравнения, решаемые разложением на множители.
Переносим все члены уравнения в левую часть, проводим группировку и раскладываем на множители:
log2 (3х2 – 5) + 2 = log2 (3х2 – 5) + 2,
log2 (3х2 – 5) + 2 — log2 (3х2 – 5) — 2 = 0,
log2 (3х2 – 5) — log2 (3х2 – 5) + (2 — 2) = 0,
(log2 (3х2 – 5) – 2)( — 1) = 0.
Произведение множителей равно нулю, если один из них равен нулю.
Получаем два уравнения, которые надо решать, не забывая об ОДЗ уравнения, а именно
.
1) log2 (3х2 – 5) – 2 = 0 log2 (3х2 – 5) = 2 3х2 – 5 = 4 х2 = 3 х = .
В ОДЗ входит только х = ;
2) — 1 = 0 х – 1 = 1 х = 2.
Ответ: ; 2.
Блок № 4.
Уравнения, решаемые с помощью замены переменной.
а) log22(2x – 1) + log2(2x -1) – 2 = 0.
Проведём замену у = log2(2x -1) и получим квадратное уравнение у2 + у – 2 = 0. Его корни
. Оба корня входят в ОДЗ уравнения. Ответ: ; .
б) 4 – lg x = 3. Проведём замену lg x = у, тогда данное уравнение примет вид у2 + 3у – 4 = 0, корни уравнения у1 = 1, у2 = -4(посторонний корень). Следовательно, = 1, откуда х = 10.
Ответ: 10.
Блок № 5.
Уравнения, решаемые с помощью их специфики.
Встречаются задачи, решение которых основано на свойствах входящих в них функций.
log2 x = . Исследуем монотонность функций, входящих в уравнение. Функция у1 = log2 x – возрастающая, функция у2 = — убывающая. Корень уравнения – единственный, это точка пересечения графиков этих функций. Корень уравнения подбираем (угадываем).
Ответ: 4.
а) приём логарифмирования:
3х = х, найдём логарифм по основанию 3 от обеих частей данного уравнения и используем свойства логарифмов. Получаем: log3 (3x) = log3 (xlogx)
log3 3 + log3 x = log3 x2 ∙ log3 x 1 + log3 x = 2log32x . Введём новую переменную
у = log3 x и получим квадратное уравнение 1 + у = 2у2 2у2 – у – 1 = 0, у1 = 1, у2 = — .
Вернёмся к х: . Ответ: 3; .
б) применение основного логарифмического тождества:
3 х+ 2= 64.
Запишем х в виде х = 5=( 2)= 2. Данное уравнение приведётся к виду
3∙ 2+ 2= 64 4 ∙ 2= 64 log5 x = 4. Ответ: 625.
Блок № 6.
Уравнения, решаемые графически.
Определить число корней и найти меньший из них log0,5 x = —x2 + 2x – 1.
Построим графики функций у1 = log0,5 x , у2 = -(х – 1)2. Графики пересекаются в точках А и В. Следовательно, уравнение имеет два корня. Абсцисса точки А меньше абсциссы точки В. Поэтому меньший корень уравнения х = 1. Ответ: 2 корня, меньший из них 1.
4. Подведение итогов урока. Выставление оценок наиболее активным ученикам, консультанты тоже принимают участие в оценке работы членов своей группы.
5. Постановка домашнего задания: на экране – логарифмические уравнения:
№ 1. 2 + 6 log8 x = log2 ( 6x + 18).
№ 2. lg (x + 4) + lg (2x + 3) = lg ( 1 – 2x).
№ 3. log2 x + log4 x + log16 x = 7.
№ 4. х= .
Ответы: №1 (3); №2 (-1); №3 (16); №4 (1; ; 16).
Необходимо взять несколько заданий из учебника, подойдя к ним дифференцированно. В домашнюю работу можно включить творческие задания, уравнения такого типа как,
а) log3 x ∙ log9 x ∙ log27 x ∙ log81 x =;
б) log2 x + log4 x + log8 x = 11;
в) х= 0, 0001;
г) logх3 + log3 x = log3 + log3 + 0, 5.
Ответы: а); 9, б)64, в)10-2; 10-1; 10; 100, г)2.
Следующий урок по теме «Решение логарифмических уравнений и неравенств» будет посвещён решению логарифмических неравенств. В начале урока проводится проверочная работа на 10-12 минут, в которую можно включить уравнения, которые решаются уже известными методами, использованными на прошлом уроке и при выполнении домашней работы.
Приведу пример одного варианта такой проверочной работы:
№ 1.
Решить уравнение: 2 log0,5 x = log0,5 (2x2 – x);
№ 2.
Решить уравнение: (х2 + х – 2) log(3х – 2) = 0;
№ 3.
Решить уравнение: lоg4(lоg3(lоg2(х2 + 7х))) = 0;
№ 4.
Найдите все значения параметра а, при которых уравнение (х – а) log2 х = 0 имеет единственное решение.
№ 5.
Выберите наибольшее решение уравнения:
2 log32 х — 7 log3 х = — 3.
Дополнительно: log2x+1(5 + 8x – 4x2) + log5-2x(1 + 4x + 4x2) = 4.
Ответы: №1 (1); №2 (1); №3 (-8; 1); №4 ( (-∞; 0) );№5 (27);доп.(; 1).
Согласно тематическому планированию на тему «Решение логарифмических уравнений и неравенств» отводится пять уроков, после которых можно провести тематическую контрольную работу по своей структуре похожей на ЕГЭ, что является некоторым этапом подготовки к этому испытанию.
Приведу один вариант такой контрольной работы:
В1. Упростить выражение 2+ log575 — log53.
В2. Указать промежуток, которому принадлежит корень уравнения log2 (х + 1) = 4.
В3. Решить неравенство log0,4(1,9х – 1, 3) ≥ — 1.
В4. Найти сумму корней уравнения log4x + log5 (x2 + 75) = 1.
B5. Найти число целых решений неравенства log22х — log2х ≤ 6.
С1. Пусть (х; у) – решение системы Найти отношение .
С2. Решите уравнение lg x2 + lg (x + 10)2 = 2 lg 11.
C3. Решите неравенство (х – 1) log+ ≥ 0.
Ответы: В1.1. В2.2. В3.1. В4.20. В5.8. С1.27. С2
-11; 1; -5 . С3.(0,5; 1)